公主的腿间舌奴们np肉_国产在热线精品视频99公交_公主车上荫蒂添的好舒服_公侵犯人妻中文字慕一区二区_公么大龟弄得我好舒服秀_公交车+多人+高cH文章推荐_日本熟妇另类视频在线播放

量化設計價值- 如何創(chuàng)建體系化的監(jiān)控系統(tǒng)

2021-6-22    資深UI設計者

隨著用戶體驗設計的發(fā)展,我們已經(jīng)過了僅依賴需求和直覺就可以完成產(chǎn)品設計決策的階段了。數(shù)據(jù)對用戶體驗設計師的價值可以總結(jié)為兩點:1. 數(shù)據(jù)可以在「產(chǎn)品設計決策階段」提供了更多元的參考意見;2. 數(shù)據(jù)可以在「產(chǎn)品設計復盤階段」提供更客觀的評價標準


設計師使用數(shù)據(jù)的場景

無論所處哪一種設計階段,總的來說設計師的數(shù)據(jù)需求主要可以分為兩大類:

undefined


1.探索事物間關(guān)系的“內(nèi)因/外因”:

是什么東西影響了用戶的購買決策 ?我的新版網(wǎng)站首頁的改版是否為產(chǎn)品提升了注冊的轉(zhuǎn)化率 ?這類需求的本質(zhì)是探究一種事物間的歡喜和因果性,常用「推論性統(tǒng)計」、「相關(guān)&非參數(shù)校驗」進行分析。對于這類需求,往往會有專業(yè)的數(shù)據(jù)分析師,用戶研究設計師,數(shù)據(jù)產(chǎn)品經(jīng)理承接。


2.發(fā)現(xiàn)數(shù)據(jù)中的“模式/異常”:

在一天之中隨著時間的變化,用戶的訪問量有什么規(guī)律 ?這類需求的本質(zhì)是在對已經(jīng)發(fā)生的事物規(guī)律做一種總結(jié) ,使用的統(tǒng)計方法更多的是「描述性統(tǒng)計」。對于絕大多數(shù)設計師而言,能夠做到發(fā)現(xiàn)數(shù)據(jù)中的 “模式/異?!?基本可以覆蓋絕大多數(shù)日常工作的需求。


本文主要關(guān)注解決設計師的第二類使用場景——發(fā)現(xiàn)數(shù)據(jù)中的“模式/異?!薄D壳案鞔蠡ヂ?lián)網(wǎng)企業(yè)內(nèi)部都會提供自研或者第三方的BI工具,因此筆者建議設計師可以通過建立一個包含關(guān)鍵的體驗指標的數(shù)據(jù)看板系統(tǒng),對自己負責的業(yè)務進行系統(tǒng)的總結(jié)和復盤。


以我曾經(jīng)的工作內(nèi)容為例,我們的產(chǎn)品是服務商家進行“前后端對接生產(chǎn)”的訂單審核系統(tǒng)?!?strong style="outline:0px;margin:0px;padding:0px;">效率】是制造業(yè)至關(guān)重要的關(guān)注面,在一個企業(yè)用戶的付費決策中也起到了相當重要的分量,客戶使用我們的工具進行訂單審核和流轉(zhuǎn)的效率是整個用戶體驗模型中的重要部分。因此我們需要構(gòu)建一系列合理的指標來判斷訂單系統(tǒng)的處理效率。除【效率】外,【用戶行為】【用戶特征】等都是設計師關(guān)系的信息。以【效率】為起點,最終我們構(gòu)建了一個籠統(tǒng)的包含設計師所有要監(jiān)測的信息看板系統(tǒng)


關(guān)鍵概念

本質(zhì)上互聯(lián)網(wǎng)產(chǎn)品中的看板(kanban)與自然科學領域研究人員的用 R 或者 Seaborn繪制的精美圖表沒有本質(zhì)上的區(qū)別,差異點可能在于看板更加關(guān)注時效性,同時更加具備可交互性。

隨著儀表盤工具和各種BI軟件產(chǎn)品在人群中的普及,人們對儀表盤,指標(Metric)和關(guān)鍵績效指標(KPI)的組成有不同的理解。為了確保我們都說相同的語言,我將定義一組術(shù)語,這些術(shù)語將構(gòu)成我們討論的基礎:


  • 度量(Measure):度量是一段數(shù)字上可量化的數(shù)據(jù)。銷售額、利潤、留存率,都是具體衡量的例子。

  • 維度(Dimension):維度表示給定指標的不同方面屬性。例如,時間通常被用作分析不同度量的維度。其他一些常見的維度包括地區(qū)、產(chǎn)品、部門、細分市場等。

  • 層次結(jié)構(gòu)(Hierarchy):維度可以進一步分解為層次結(jié)構(gòu)。例如,時間維度還可以形成層次結(jié)構(gòu),例如 年>季度>月>日。

  • 粒度(Grain):層次結(jié)構(gòu)中的每個級別都稱為維度的粒度。例如,年 > 季度 > 月 > 日 ,中的“年”是一個特定的粒度。

  • 指標(Metric):指標是我們經(jīng)常在儀表板中顯示的數(shù)據(jù)類型,它表示一個度量Measure)的數(shù)據(jù)段與一個或多個特定維度(Dimension)和相關(guān)粒度(Grain)的關(guān)系。



上圖是在Tableau中一個標準的指標示例-“每周銷售總額” 的構(gòu)建方式。在這個指標中,我們需要量化的“”是美元——即總銷售額,用來觀察量化數(shù)據(jù)的“維度”— 即時間,而時間維度可以被進一步分解為“年>季度>周”的層級結(jié)構(gòu),“每周銷售總額”需要關(guān)聯(lián)的維度中的特定“粒度 ——即周。


  • 看板(Cards or KanBan): 觀察一個或多個指標(Metric)運行情況的圖表

  • 儀表板(Dashboard): 儀表板是多個圖形,圖表,量表或其他直觀表示的集合。多個看板可組成一個儀表板

  • 報告(Report): 報告可以是對應圖表和其他可視化的表示,也可以是可能直接相關(guān)或不直接相關(guān)的大量圖表和可視化。多個儀表盤可組成一個報告。

“實時、受眾群體、流量獲取、行為……” 上圖為Google Analytics 中提供的多種類型的數(shù)據(jù)分析報告,報告可以非常廣泛地涵蓋廣泛的相關(guān)信息。每一種特定報告內(nèi)包含了若干個回答特定問題的dashboard,一個dashboard內(nèi)可以包含多個相互關(guān)聯(lián)的指標的看板。


一個可分析、可追蹤的數(shù)據(jù)系統(tǒng)中,最原子的構(gòu)成單位理解成一個“看板”。如何從0-1構(gòu)建一個客觀有效的數(shù)據(jù)看板系統(tǒng)?我們可以類比【一個人學習做菜】的過程,做菜的過程可以總結(jié)為三個階段:


  1. 學習菜譜&列一個采購清單

  2. 采購食材&烹飪食材

  1. 擺盤料理&品嘗美食


對應到數(shù)據(jù)看板系統(tǒng)的創(chuàng)建,我們亦可以總結(jié)為三個階段:

  1. 了解數(shù)據(jù)的特性、明確自己需要哪些數(shù)據(jù)

  2. 通過技術(shù)手段獲取數(shù)據(jù)、將粗數(shù)據(jù)加工成意義明確的指標

  1. 將指標數(shù)據(jù)可視化,觀察數(shù)據(jù)并嘗試分析現(xiàn)象



度量Measure & 維度Dimension

“ Data is more than numbers, and to visualize it, you must know what it represents. ”

數(shù)據(jù)不僅僅是數(shù)字,數(shù)字、數(shù)組、表格、都可以被稱之為數(shù)據(jù)。要將數(shù)據(jù)形象化,你必須知道它代表什么。為了構(gòu)建有效的效率指標,第一步是:明確為了解決當前的問題,要觀察的【度量】是哪些,已及這些度量又需要從哪些【維度】進行觀察。

了解數(shù)據(jù)類型

一個線上的項目每天都在收集成百上千種數(shù)據(jù),怎樣確定自己需要什么數(shù)據(jù)作為 度量(Measure)呢?首先值得注意的是,不是所有類型的數(shù)據(jù)都適合作為度量Measure)被加工成指標。


不同學科,不同課程,不同領域,對于數(shù)據(jù)類型的定義基本一樣,但稱呼并不完全一樣。統(tǒng)計學中,數(shù)據(jù)類型分為四種:定類,定序,定距,和定比。這四種類型是從低到高的遞進關(guān)系,高級的類型可以用低級類型的分析方法來分析,而反過來卻不行。

定性數(shù)據(jù)與定量數(shù)據(jù)


從宏觀角度分析,數(shù)據(jù)類型分為 定性 和 定量 兩種。一個通俗的例子,以自身為例:例如衣服的顏色,頭發(fā)的類型和鼻子的形狀這些標識標識的是定性數(shù)據(jù);例如身高,體重,年齡和鞋子的尺碼,這些可測量的是定量數(shù)據(jù)。


1.定量數(shù)據(jù):定量數(shù)據(jù)是統(tǒng)計數(shù)據(jù),通常具有自然結(jié)構(gòu)性意味著它更加嚴格和明確,可再細分為連續(xù)/離散兩種。此類數(shù)據(jù)使用數(shù)字和值進行測量,這使其更適合進行數(shù)據(jù)分析??梢酝ㄟ^以下方式獲取定量數(shù)據(jù):

  • 測量

  • 實驗

  • 調(diào)查

  • 市場報告

  • ……


2.定性數(shù)據(jù):定性數(shù)據(jù)是非統(tǒng)計數(shù)據(jù),本質(zhì)上通常是非結(jié)構(gòu)化或半結(jié)構(gòu)化的。定性數(shù)據(jù)可以用來問“為什么”的問題。它是調(diào)查性的,在進行進一步研究之前通常是開放性的。從定性研究中生成的數(shù)據(jù)用于理論化,解釋,發(fā)展假設和初步理解。可以通過以下方法獲取定性數(shù)據(jù):

  • 文字和文件

  • 音頻和視頻記錄

  • 圖片和符號

  • 訪談筆錄和焦點小組

  • ……


想要了解訂單流轉(zhuǎn)的效率是怎樣,最簡單的方法是通過和我們的客戶進行面聊一下使用情況并記錄一下反饋,但這樣的產(chǎn)物并不方便進行統(tǒng)計分析和展示。盡管有一些對定性數(shù)據(jù)“結(jié)構(gòu)化”的方法,比如對定類數(shù)據(jù)進行的非參數(shù)校驗,但實施起來成本較高。定量數(shù)據(jù)因為本身結(jié)構(gòu)化的特點更適合分析,因此在這里建議設計師在構(gòu)建自己的dashboard系統(tǒng)時,需要跟蹤分析的數(shù)據(jù)盡量選擇定量數(shù)據(jù)。


確定需要觀察的度量&維度

明確需要觀察的度量有哪些,首先需要從要解決的問題出發(fā)。但是沒有一個整體的分析模型,往往會導致我們的分析遺漏很多信息和細節(jié),導致數(shù)據(jù)分析師無法理解彼此的需求,最終導致最后產(chǎn)出的看板難產(chǎn)或答非所問:


使用的問題分析工具—— KPI wheel

在這里介紹一種名為KPI Wheel的簡單工具,可用于收集將用于定義和可視化指標的前期必備信息。您可以將 KPI wheel 的圖片打印在紙上,然后開始嘗試依次思考這四個方面:


  1. “ 要解決的問題是什么”

  2. “誰在關(guān)心這個問題?”

  1. “我需要去哪里獲取這些數(shù)據(jù)?”

  2. “為什么這個數(shù)據(jù)很重要?”


在解答的上述的幾個問題的過程中隨手記錄:(1)可能引發(fā)什么進一步的疑問、(2)使用此信息可以采取什么行動或決定。不斷的提出問題并進行進一步分析,這么做的目的是讓用戶不斷分解問題,直到他們有足夠的信息來采取行動或做出決定。經(jīng)過幾輪完整的分析后,用戶就可以大致確定指標的「度量」和 所需要的「維度」。


以我曾經(jīng)的工作內(nèi)容為例:我們的產(chǎn)品是服務商家進行“前后端對接生產(chǎn)”的訂單審核系統(tǒng),我們需要構(gòu)建一系列合理的指標來判斷訂單系統(tǒng)的處理效率。以下是與產(chǎn)品經(jīng)理討論過程中的具體流程:


第一輪 KPI Wheel ——

1.Answer KPI Wheel:“ WHAT? WHO? WHERE? WHY? 


what:我們需要一種途徑了解用戶進行訂單審核的效率如何

針對這個問題我們聯(lián)想到:

1.想要了解訂單處理效率,首先需要定義什么叫訂單的效率;在行業(yè)中有一種叫做「訂單生命周期」的專有名詞來表示訂單從創(chuàng)建到結(jié)束的時長,是一個可借鑒的概念

2.針對我們的業(yè)務,一個工單的生命周期經(jīng)歷了從創(chuàng)建-流轉(zhuǎn)&審核-通過,一個工單從創(chuàng)建到通過所經(jīng)歷的時間是我們需要記錄的【度量】


who:產(chǎn)品/運營/設計 三個業(yè)務方都關(guān)注訂單的效率

針對這個問題我們聯(lián)想到:

1.對于不同的角色,在檢測數(shù)據(jù)的時候都關(guān)注那些維度?

2.訂單類型分審核單&生產(chǎn)單這兩種,兩種類型的訂單,訂單類型是一個必要維度

3.時間是上述三個相關(guān)方都需要關(guān)注的維度,一個訂單在通過審核時的時間,是一種重要的分析維度;而“時間”維度,我們可以繼續(xù)拆分為: 年-月-周-日 的層次結(jié)構(gòu)

4.對于運營,了解不同行業(yè)的商家的訂單效率對進行深入運營是必要的。而"行業(yè)"維度根據(jù)分類方式的不同,又可以歸類為一級行業(yè)(軟裝設計/板式家具/…),二級行業(yè)(整木定制/辦公家具定制/暖通/地板/瓷磚……)

4.對于產(chǎn)品,為了更好的維護客情,對于特定的大客戶的數(shù)據(jù)需要重點關(guān)注。因此商家賬號的ID,也是重要的分析維度。


where:我們需要的數(shù)據(jù)要在在哪里獲???

針對這個問題我們聯(lián)想到:

1.與一般的用戶行為數(shù)據(jù)不同,訂單的數(shù)據(jù)都儲存在后臺的操作日志中

2.需要的"行業(yè)"維度,可以復用其它團隊已經(jīng)制定好的標簽


why:效率是企業(yè)的生命,制造業(yè)中存在各種效率指標,如“人效”/“平效”等。糟糕的使用效率會造成我們的產(chǎn)品在根本上是不可接受的,因此效率指標非常重要


針對這個問題我們聯(lián)想到:

1.通過【訂單生命周期】統(tǒng)計的時間,可以在整體上評估訂單系統(tǒng)的流轉(zhuǎn)效率。但是僅僅依靠一個這樣的指標,缺少一些更細致的視角??梢栽黾訉Ψ桨福ㄓ唵蔚妮d體)的停留時長的統(tǒng)計,來計算審核在整個生命周期中所耗時間的占比。


2.The Rising Questions & Action:“ 根據(jù)問題1的答案,這還會引發(fā)什么其他問題,或者您將采取什么行動?”

在回答上面的4W的過程中,會引發(fā)其它衍生問題,例如 “訂單審核周期的時間的最小單位是什么?”  等等。針對上述的其中衍生問題,可以再進行一輪kpi wheel的自問自答。比較簡單的衍生問題,不需要4個方面都進行問題分析。


最終 ——

在多次重復上述的兩個過程后,最終我們確定了要在產(chǎn)品中量化哪些 度量(Measure),以及這些度量需要哪些分析維度,并將所有需要的度量和相關(guān)的維度都用表格的形式記錄下來。

例如,'訂單從創(chuàng)建到最終通過的時長(h)',是一個需要被量化的度量。它需要關(guān)聯(lián)的維度(Dimension)有時間、商家ID、一級行業(yè)、二級行業(yè)。



指標Metric

研究完成菜譜,記錄??采購清單后,接下來的帶班過程就是準備食材并進行烹飪。當你已經(jīng)明確了要觀察的 度量(Measure)、和需要關(guān)聯(lián)的維度(Dimension),下一步就是通過數(shù)據(jù)建設獲取這些度量,然后將度量加工成指標。

建設埋點

獲取度量的過程就是取數(shù)’的過程。想要創(chuàng)建看板,數(shù)據(jù)分析師需要通過各種方式獲取一張包含所有你需要的信息的寬表。如何獲得這張包含一切關(guān)鍵信息的表格?我們需要借助埋點獲取數(shù)據(jù)。


所謂埋點就是在應用中特定的流程收集一些信息,用來跟蹤應用使用的狀況。您可以把用戶在與您的網(wǎng)站或應用互動時觸發(fā)交互行為理解為一個 “ 事件 ”,一個時間存在一個觸發(fā)的條件,當達到這個觸發(fā)條件后就會上傳請求,請求中會攜帶需要的 “ 參數(shù) ”。例如“用戶點擊按鈕將商品加購到購物車”這個行為,每次用戶觸發(fā)這個行為后都會發(fā)送一個請求,而這個請求中會記錄:1.加購商品的金額/2.加購商品的類型/3.加購商品的商品ID…等信息。這些結(jié)構(gòu)化的信息構(gòu)成了我們需要的度量(Measure)與 維度(Dimension)。


在完成了最基礎的埋點后,我們就獲得了最基礎的數(shù)據(jù)。

如何建立有效指標建議

“指標”是量化衡量標準,未經(jīng)加工的數(shù)據(jù)不具備可觀察的價值。通過埋點,我們單純只是得到了若干張包含所有用戶信息的巨型表格,我們是分析不出什么有用信息的。為了更有效的去觀察和分析作為 度量Measure)的數(shù)據(jù),就需要對埋點數(shù)據(jù)進行一定的加工,變得更加易于理解和表達。


當一個度量Measure)的數(shù)據(jù)段與一個或多個特定維度(Dimension)之間互相聯(lián)系了起來,度量就成為了指標。例如,同樣的一份關(guān)于【訪問用戶人數(shù)】這一度量,可以根據(jù)關(guān)聯(lián)的時間維度的不同,創(chuàng)建 DUV 和 MUV 等多個不同的指標。


如何創(chuàng)建一個有效的指標,結(jié)合筆者的工作經(jīng)驗,下面給出三點建議:


(1)為一個指標設想一個高級概念:

  • 首先指標的名稱需要客觀,要讓人乍一聽就能大概會意,例如:「加購商品操作每日點擊次數(shù)」。而如果您定義的是類似:“軟件上手度”,這種概念比較晦澀、在業(yè)內(nèi)又沒有約定俗成的定義的指標,可能需要重新考慮概念是否恰當。

  • 每周訪問站點的用戶總數(shù)/ 每日訪問站點的用戶數(shù)/ 每日訪問站點的新手用戶數(shù)…,這些指標即相互獨立,但反應的又是同一件事的客觀熟悉的時候,我們可以把這些詳細的指標統(tǒng)一用一個高級的指標概念來做一個歸納,例如“站點訪問用戶數(shù)”

 

(2)檢查并確定定義指標的細節(jié):

  • 確定了指標的基礎概念后,需要檢查一遍指標的細節(jié)。

  • 例如,“訂單生命周期”這個指標的定義中,生命周期是指一個訂單從創(chuàng)建到最后通過審核耗時,而與其關(guān)聯(lián)的維度有時間,訂單類型等。需要強調(diào)的是,一個訂單可能會存在:創(chuàng)建時間、通過時間,這兩種不同的時間戳。而在“訂單生命周期”這個指標我們需要關(guān)聯(lián)的時間維度是【通過時間】。如果關(guān)聯(lián)是【創(chuàng)建時間】,則會得到另外一種完全不同的生命周期計算方式。

(3)將測量到的度量數(shù)據(jù),通過計算總結(jié)為一個指標:

  • 通過埋點收集到的是大量的數(shù)據(jù),是一個巨大的整體,而指標則是描述總體特性的參數(shù)。而把原始數(shù)據(jù)組織并總結(jié)成更易處理的形式的技術(shù)叫做描述性統(tǒng)計,一種最常見的方法是通過計算平均數(shù)的方法總結(jié)一組數(shù)據(jù)。

  • 這些描述總體特性的參數(shù)中又存在不同的用途,有的用來描述頻數(shù)分布,有的用來描述集中趨勢:平均數(shù),眾數(shù)、中位數(shù),有的用來描述變異性:四分衛(wèi)距、方差。我們需要根據(jù)自己的用途選擇合適的統(tǒng)計方式來構(gòu)建指標。

根據(jù)統(tǒng)計方法的不同,常見的指標類型有以下幾種,他們擁有不同的分布類型和方差的計算公式


  • 【 計數(shù) Count 】

  • 【 概率 Probability 

  • 【 平均數(shù) Average 】

  • 【 中位數(shù)(或其它位數(shù))Percentile

  • 【 比率 Rate 】

  • 【 一般比例 Ratio 】



可視化 Visualize

烹飪好食材并后,接下來的工作就是擺盤與上菜。優(yōu)秀的擺盤可以讓料理更加精致和高級,優(yōu)秀的數(shù)據(jù)可視化可以幫助我們更好的觀察與分析數(shù)據(jù),反之糟糕的數(shù)據(jù)可視化可能會讓我們丟失很多重要信息。

Why visual ?

為什么一定要使用看板(圖表)來觀察和分析數(shù)據(jù)?僅關(guān)注幾個關(guān)鍵指標的數(shù)據(jù)是否就已經(jīng)足夠?


使用看板對指標進行觀察和分析的意義在于:相比單純的數(shù)字,圖表可以攜帶更多的展示維度(大小、長度、顏色、面積…),能幫助我們多維度的觀察數(shù)據(jù)、避免疏漏。


例如,安斯庫姆四重奏(Anscombe's quartet)是四組基本的統(tǒng)計特性一致的數(shù)據(jù),但由它們繪制出的圖表則截然不同。如果僅依靠基本的統(tǒng)計特性來觀察數(shù)據(jù),我們很容易忽略一些重要信息。



選擇合適的圖表類型

BI工具中支持多種圖表類型,比如展示瀏覽路徑的“桑基圖”、展示轉(zhuǎn)化率的“漏斗圖”,甘特圖、散點圖等。如何選擇合適的圖表來展示并分析你的數(shù)據(jù)可以參考下圖:


圖表種類繁多,但只要掌握其中的一小部分就能滿足絕大多數(shù)需求。對于大部分設計師,以下3種最基礎的圖表類型是最常用的:


1.條形圖:

條形圖是最常用的圖表類型。條形圖易于閱讀,我們用眼睛比較條形圖的末端,很容易快速得出結(jié)論:哪一類最大、哪一類最小以及類別之間的增減區(qū)別。


2.線圖:

線圖最常用于繪制連續(xù)的數(shù)據(jù)。因為線連接了點,這就暗示了點與點之 間存在著離散數(shù)據(jù)(一系列數(shù)據(jù)分隔成不同的類別)間沒有的聯(lián)系。通常,連續(xù)性數(shù)據(jù)都以時間為單位:天、月、季度和年度。


3.餅圖:

餅圖在總量間各部分的占比時比較高效


最后,當我們創(chuàng)建了許多看板后如何進行歸納?我們可以將關(guān)注相同的問題的看板歸納在一起,就形成了一個關(guān)注同一類問題的Dashboard;對不同的 Dashboard 提取共性,將同一個業(yè)務的不同Dashboard組織起來,就形成了一個Report。一個Report內(nèi)可以籠統(tǒng)的包含當前業(yè)務需要關(guān)注的所有信息。


例如:【訂單生命周期】關(guān)注的是企業(yè)的訂單效率問題,但并不是唯一關(guān)注效率的指標。另外還有諸如:“審單員平均審核時長”這樣的人效指標的看板,這些看板同樣反饋的是訂單的效率。我們將關(guān)注相同的問題的看板歸納在一起,就形成了一個Dashboard,Dashboard內(nèi)的看板與指標都有關(guān)注同樣的問題—效率。除了效率,身為設計師的我們還需要關(guān)注很多其他的問題:比如使用的用戶的特征、流量的來源、用戶發(fā)起的行為等等,這些問題都可以擁有自己獨立的Dashboard。最后這些Dashboard組織在一起,就成為了一個支持系統(tǒng)的觀察分析當前業(yè)務的體驗指標的完整報告。


觀察與分析數(shù)據(jù)

“ 我們需要的不是數(shù)據(jù) , 而是數(shù)據(jù)告訴我們的實事 ”。通過建立一個系統(tǒng)的監(jiān)測體系的目的主要是為了從數(shù)據(jù)中探索: 模式/ 異常。不管圖表的形式是什么,我們都需要留心觀察這兩者。


1.何為「模式」:

模式即數(shù)據(jù)中的某項規(guī)律。比如機場每月的旅客人數(shù),雖然隨著時間推移變化不定,但是通過幾年的數(shù)據(jù)對比,我們可能發(fā)現(xiàn)旅客人數(shù)存在著季節(jié)性或周期性的變化,某些月份的旅客數(shù)量一致偏低/某些月份則一直偏高。

根據(jù)數(shù)據(jù)畫像我們可得知某個產(chǎn)品的成熟期用戶占絕對多數(shù)的現(xiàn)狀,

了解了這個「模式」就可以更好的制定符合絕大多數(shù)用戶心智的設計策略


2.何為「異?!梗?

異常即問題數(shù)據(jù)。異常數(shù)據(jù)并非是錯誤數(shù)據(jù),也有可能是設備記錄或人工錄入數(shù)據(jù)時,出現(xiàn)的問題。我們通過異常異常分析,一方面可以分析異常原因;一方面可以發(fā)現(xiàn)現(xiàn)有系統(tǒng)的漏洞。

蘋果公司通過監(jiān)控異常值、發(fā)現(xiàn)了位于深圳的AppleCare灰色產(chǎn)業(yè),

進而改善了AppleCare的產(chǎn)品策略,避免了巨大的損失


最后在觀察分析數(shù)據(jù)的過程中,有三個需要特別關(guān)注的數(shù)據(jù)的特性不要忘記:


(1) 數(shù)據(jù)具有可變性(VARIABILITY)

數(shù)據(jù)的可變性這一重要的特性讓我們可以從數(shù)據(jù)中獲取規(guī)律和關(guān)系。如果您構(gòu)建的指標本身并不具備可變性了,那您很可能需要嘗試其他指標進行跟蹤和分析。


(2)數(shù)據(jù)具有不確定性(UNCERTAINTY )

很多數(shù)據(jù)都是只能提供一個估計而不是絕對準確的數(shù)量。例如:分析人員通常會通過樣本的數(shù)據(jù),進而對整體的數(shù)據(jù)分布進行進行猜測。


(3)數(shù)據(jù)需要聯(lián)系上下文( CONTEXT )

數(shù)據(jù)分析離不開情境。我們知道,數(shù)據(jù)的產(chǎn)生必然是有其情境的,不過統(tǒng)計數(shù)據(jù)時,我們通常都要剝離情境;而當我們進一步分析數(shù)據(jù)時,又必須回到具體的情境中去。


例如:某個羽絨服經(jīng)銷商發(fā)現(xiàn)某一年冬季的銷售額產(chǎn)生了明顯的下降,這本應該是一個異常的信號,但我們不能簡單粗暴的定義這是一個糟糕的數(shù)據(jù)。因為實際上,銷售額下滑的哪一年是一個暖冬,且和同類的競品相比自己的產(chǎn)品銷售額下滑趨勢的更低。結(jié)合情景分析數(shù)據(jù),往往能得到意想不到的結(jié)論。



藍藍設計建立了UI設計分享群,每天會分享國內(nèi)外的一些優(yōu)秀設計,如果有興趣的話,可以進入一起成長學習,請掃碼藍小助,報下信息,藍小助會請您入群。歡迎您加入噢~~希望得到建議咨詢、商務合作,也請與我們聯(lián)系。

截屏2021-05-13 上午11.41.03.png


文章來源:站酷   作者:酷家樂UED

分享此文一切功德,皆悉回向給文章原作者及眾讀者.
免責聲明:藍藍設計尊重原作者,文章的版權(quán)歸原作者。如涉及版權(quán)問題,請及時與我們?nèi)〉寐?lián)系,我們立即更正或刪除。

藍藍設計tweetduck.com )是一家專注而深入的界面設計公司,為期望卓越的國內(nèi)外企業(yè)提供卓越的UI界面設計、BS界面設計 、 cs界面設計 、 ipad界面設計 、 包裝設計 、 圖標定制 、 用戶體驗 、交互設計、 網(wǎng)站建設 平面設計服務


日歷

鏈接

個人資料

藍藍設計的小編 http://tweetduck.com

存檔

阿拉善盟| 江口县| 郯城县| 二连浩特市| 瓮安县| 武夷山市| 武汉市| 绵竹市| 柳州市| 封开县| 长沙市| 汕头市| 乐山市| 新田县| 固镇县| 丰镇市| 伊吾县| 大冶市| 西峡县| 亳州市| 洪洞县| 博客| 南川市| 芜湖市| 云霄县| 滨海县| 朝阳市| 马关县| 古田县| 乌兰察布市| 灵台县| 百色市| 柳林县| 高州市| 弋阳县| 霍城县| 宝丰县| 房产| 大悟县| 梅州市| 甘肃省|